2014 Microwave Radiometry and Remote Sensing of the Environment

March 24-27, 2014
Pasadena, California

Fifteen papers related to Aquarius were presented at the 2014 MicroRad, a meeting for the microwave radiometry community to present new designs, research results, technological advances and unique innovations in the field of passive microwave remote sensing. These papers covered applications such as soil moisture, flood monitoring, radio frequency interference, roughness correction, ocean salinity, sea ice thickness, and calibration efforts. MicroRad is sponsored by the Geoscience and Remote Sensing Society of the Institute of Electrical and Electronics Engineers.

Program Guide
Documents (16)
Sort by: Author Title
A Bayesian Approach for a SAC-D/Aquarius Soil Moisture Product
Bruscantini, C.A., Grings, F., Barber, M., Perna, P., and Karszenbaum, H. (10-Sep-15). Several retrieval algorithms were implemented to retrieve soil moisture and optical depth from Aquarius/SAC-D satellites. The methodology of a novel Bayesian algorithm is presented, and its results are contrasted with previous algorithms.

A Roughness Correction Algorithm for Aquarius Using MWR
Hejazin, Y., Jones, W.L., and El-Nimri, S. (10-Sep-15). The Aquarius/SAC-D mission science objective is to provide high-resolution global sea surface salinity (SSS) maps every 7-days, which are derived using the AQ combined L-band radiometer/scatterometer. In this paper, an alternative sea surface roughness correction algorithm is presented that uses a new semi-empirical Radiative Transfer Model (RTM) to estimate the ocean emissivity.

Advances in Calibration of the SMOS Zero-Baseline Radiometers
Colliander, A., Chae, C.S., Kainulainen, J., Dinnat, E., Torres, F., Corbella, I., Oliva, R., and Martin-Neira, M. (10-Sep-15). Over the course of the more than four-year mission several enhancements have been developed for the calibration of the zero-baseline radiometers of ESA's SMOS (Soil Moisture Ocean Salinity) mission.

An Imaging Algorithm for Synthetic Aperture Interferometric Radiometers with Built-in RFI Mitigation
Camps, A., Park, H., and Gonzalez-Gambau, V. (10-Sep-15). Radio Frequency Interference is one of the most important limiting factors in the accuracy of the brightness temperatures. The L-band is affected by this, and a technique is presented as an attempt to mitigate the RFI at its origin.

Application of the AQ Rain Accumulation Product for Investigation of Rain Effects on AQ Sea Surface Salinity Measurements
Santos-Garcia, A., Ebrahimi, H., Hejazin, Y., Jacob, M.M., Jones, L., and Asher, W.E. (10-Sep-15). This paper focuses on the effects produced by rainfall on the Aquarius sea surface salinity retrieval, using a macro-scale rain impact model.

Aquarius Radiometer Status
Le Vine, D.M., Piepmeier, J.R., Dinnat, E.P., de Matthaeis, P., Utku, C., Abraham, S., Lagerloef, G.S.E., Meissner, T., and Wentz, F. (10-Sep-15). The Aquarius radiometers include several special features such as measurement of the third Stokes parameter, fast sampling, and careful thermal control, and a combined passive/active instrument. Aquarius is working well and in addition to helping measure salinity, the radiometer special features are generating new results.

Aquarius Retrieval of Sea Ice Thickness: Initial Results
de Matthaeis, P., Utku, C., Le Vine, D.M., and Moyer, A. (10-Sep-15). Aquarius brightness temperature data are used to calculate sea ice thickness in the Arctic region. The initial sea ice thickness values retrieved from Aquarius data are compared to the SMOSIce Data as well as to estimates from NASA's Operation IceBridge.The accuracy of retrieved Aquarius ice thickness is possibly influenced by uncertainties in the ancillary input parameters and by the coarser resolutions of Aquarius.

Aquarius Whole Range Calibration: Celestial Sky, Ocean, and Land Targets
Dinnat, E.P., Le Vine, D.M., Bindlish, R., Piepmeier, J.R., and Brown, S.T. (10-Sep-15). Aquarius is a spaceborne instrument that uses L-band radiometers to monitor sea surface salinity globally. Other applications of its data over land and the cryosphere are being developed. Combining its measurements with existing and upcoming L-band sensors will allow for long term studies.

Calibration Efforts for MWR On-board SAC-D/Aquarius Mission
Bruscantini, C.A., Maas, M., Grings, F., and Karszenbaum, H. (10-Sep-15). This study reports the calibration results obtained by a land cross-calibration between Windsat and the Microwave Radiometer.

CONAE Microwave Radiometer (MWR) Counts to Tb Algorithm and On-Orbit Validation
Ghazi, Z., Santos-Garcia, A., Jacob, M.M., and Jones, L. (10-Sep-15). This paper presents the brightness temperature algorithm and on orbit validation for the newest version (V6.0), which includes a radiometer system non-linearity correction.

Effect of Exit-Hole Frequency Shift and Wall Loss on the Permittivity Measurements of Seawater at L-Band
Zhou, Y., Lang, R., Utku, C., and Le Vine, D. (05-Dec-17). The accuracy of the George Washington University’s (GW) L-band cavity measurements of seawater is examined by measuring the effect of the capillary tube’s exit hole on the resonant frequency and by performing a theoretical study of the effect of cavity wall loss on the perturbation equations. The purpose of this study is to confirm the accuracy of past seawater measurements. GW has employed a cavity technique to determine the complex permittivity of seawater at L-band (1.413 GHz).

Enhanced Resolution for Aquarius Salinity Retrieval Near Land-Water Boundaries
Utku, C., and Le Vine, D.M. (10-Sep-15). A numerical reconstruction of the brightness temperature is examined as a potential way to improve the retrieval of salinity from Aquarius measurements closer to land-water boundaries. A test case using simulated ocean-land scenes suggest promise for the technique.

Inter-Comparison of SMOS and Aquarius Sea Surface Salinity: Effects of the Dielectric Constant and Vicarious Calibration
Dinnat, E.P., Boutin, J., Yin, X., and Le Vine, D.M. (10-Sep-15). We assess the impact of the dielectric constant model and the ancillary sea surface salinity used by Aquarius and the Soil Moisture and Ocean Salinity (SMOS) missions for calibrating the radiometers and retrieving sea surface salinity.

Microwave Radiometer (MWR) Beam-Pointing Validation for the Aquarius/SAC-D Mission
Clymer, B., May, C., Schneider, L., Madero, F., Labanda, M., Jacob, M.M., and Linwood Jones, W. (10-Sep-15). The purpose of the Aquarius/SAC-D mission is to provide measurements of global sea surface salinity (SSS), which will be used to understand climatic changes of the global water cycle and how these changes influence the general ocean circulation.

Paraná River Delta 2013 Flood Monitoring Using AMSR-2, SMOS, Aquarius and Cosmo Skymed Data
Salvia, M., Grings, F., Bruscantini, C., Barraza, V., Perna, P., Karszenbaum, H., and Ferrazzoli, P. (10-Sep-15). This paper compares the performance of Aquarius, SMOS and AMSR2 data to estimate the fraction of flooded area and mean water level inside a wetland, in the framework of an active/passive flood monitoring algorithm.

The Aquarius Salinity Retrieval Algorithm Recent Progress and Remaining Challenges
Meissner, T., Wentz, F., Ricciardulli, L., Hilburn, K., and Scott, J. (10-Sep-15). This paper summarizes the major steps of the updates in the Aquarius Level 2 ocean surface salinity (SSS) retrieval from Version 2.0 to Version 3.0, which is scheduled to be released in May 2014.